Abstract

This study examined the changes in chemical composition and digestibility of silage forage common reed improved with the addition of poultry litter. In a completely randomized design to investigate changes in chemical composition, forage common reed, first stage Vegetative picked to pieces 3-4 cm above ground and the weight ratio of poultry litter (forage common reed: Poultry litter) 20:80, 40:60, 60:40 % forage common reed:poultry litter, control treatment), added and mixed, and the Plastic bins of Silage. The chemical composition measured included dry matter (DM), Organic matter (OM), Ash, Crude protein (CP), Neutral detergent fibre (NDF), Acid detergent fibre (ADF) and pH. The results were analyzed. To measure the percentage of dry matter digestibility and degradability, Treatments respectively nylon bag and gas production test on two castrated male Holstein cows were used. The results showed that the highest rate of treatment 4 cp and This difference in treatment 1 had the lowest CP were significant (P<0.05). Treatment 4 had the lowest ADF and NDF and ADF and NDF treatment 1 had the highest (P<0.05). Also, the treatments studied Degradation significantly different at different times of incubation (P<0.05) showed. So The four most common treatments and treatment 1 showed the lowest degradation. The results of the volume of gas produced by (mg/ml) by incubation treatments at different times showed that Treatment 4 and treatment with 1 the highest and lowest volume of gas produced and the digestibility of all time Anko Basyvn had different. In total, according to the information and results obtained from the chemical composition Degradability and digestibility treatments concluded that its superiority over treatment 4 other treatments showed.

Keywords: forage common reed, improving the nutritive value, poultry litter
Nutritional quality of *Phragmites australis* forage -broiler litter silage

Supervisor:
Dr. M.R. Dehghani

Advisors:
Dr. M.Yousef Elahi
Dr. F. Baghrzade kasmani

By:
H. Dadipour

Feb 2014