Abstract

In this study, chitosan-zinc oxide nanoparticles was used as solid-phase dispersion combining with dispersive liquid-liquid microextraction for the determination of thirteen n-alkanes such as C_8H_{18} to $C_{20}H_{42}$ in soil samples. The solid samples were directly blended with chitosan - nanoparticles in solid-phase dispersion method. The eluent of solid-phase dispersion was applied as the dispersive solvent dispersive liquid-liquid microextraction. The compounds were used gas chromatography-flame ionization detector analysis. The optimized conditions were 200 μ L of extracting solvent volume, 2 mL dispersive solvent volume, an extraction time of 2 min, 1 mol L⁻¹ of solt and the ratio of sample:sorbent up to 1:2. Under the optimum conditions detection limits between 0.08 to 2.5 ngg⁻¹ and good linearity with correlation coefficients in the range 0.9991-0.9995 were achieved. The presented procedure was combined the advantages of chitosan-zinc oxide nanoparticles, solid-phase dispersion and dispersive liquid-liquid microextraction, and could be applied for the determination of n-alkanes in complicated soil samples.

Keywords: n-Alkanes; Solid-phase dispersion; Dispersive liquid-liquid microextraction; Soil samples.

University of Zabol Graduate School Faculty of Science Department of Chemistry

The Thesis Submitted for the Degree of Master of Science (In the field of Analytical Chemistry)

Extraction of n-Alkanes (C₈-C₂₀) from Soil Samples by Dispersive Liquid-Liquid Microextraction and Gas Chromatography

Supervisor:

Dr. Mostafa Khajeh

Advisor:

Mansoureh Rakhshany pour

By:

Esmat Arefnejad

September 2014