≥ منابع

University of Zabol Graduate school Faculty of science Department of Chemistry

Dissertation for Master's Degree in Organic Chemistry

Title:

Metal-organic frameworks and their hybridization with ionic liquids as new generation of catalysts in multi-component and oxidation reactions

Supervisors:

Dr. Esmael Sanchooli Dr. Ali Reza Oveisi

Advisor:

Dr. Saba Daliran

By:

Mohadese Akbarian Moghaddam

∞ منابع گ

Abstract

A new Zr-basedMOF, namely, UiO-66-Urea, was prepared through polymerization between the 2-aminoterephthalate linkers of UiO-66-NH₂ MOF and 1,4-phenylene diisocyanate under mild reaction conditions. Post-synthetic coating of UiO-66-Urea with choline chloride (ChCl), as easily available, inexpensive, and nontoxic reagent, under thermal and solvent-free conditions resulted in in-situ formation of a deepeutectic solvent-like on the UiO-66-Urea's surface, called here ChCl@UiO-66-Urea. The presence of Zr₆O₄(OH)₄ nodes and urea groups may capable of strong hydrogen bond formation with ChCl. The porous and bioinspired ChCl@UiO-66-Urea was characterized using FT-IR, powder XRD, SEM, EDX elemental mapping, TGA, and BET surface area measurements. Choline chloride-coated UiO-66-Urea was successfully promoted one-pot three-component synthesis of 2-amino-4Hchromenes, as biologically active heterocycles, through reactions of aldehydes, malononitrile, and α-naphthol or 4-hydroxycoumarin under solvent-free conditions. The catalytic activity of the respective solid was superior than UiO-66, UiO-66-NH₂, UiO-66-Urea, and even ChCl-2Urea due to synergistic effect between actives sites of UiO-66-Urea and ChCl. The reaction includes a consecutive three-step Knoevenagel condensation/Michael addition/cyclization mechanism.

In the second work, an iron-based metal-organic framework was prepared under solvothermal conditions and used as a heterogeneous catalyst for the aerobic oxidation of benzyl alcohols to benzaldehydes without any additives. The catalyst was characterized using FT-IR, PXRD, SEM, EDX. The catalyst can be reused up to 3 times in the reaction.

Keywords: Metal-organic frameworks, Zirconium-based MOF, Ionic liquid incorporation in MOF, Deep-eutectic solvent, 2-amino-4H-chromenes, Hybridization, Multi-component reactions (MCR), Fe-MOF, Heterogeneous catalysts, oxidative reactions.